Redundancy in Distributed Proofs
نویسندگان
چکیده
Distributed proofs are mechanisms enabling the nodes of a network to collectivity and efficiently check the correctness of Boolean predicates on the structure of the network, or on data-structures distributed over the nodes (e.g., spanning trees or routing tables). We consider mechanisms consisting of two components: a prover assigning a certificate to each node, and a distributed algorithm called verifier that is in charge of verifying the distributed proof formed by the collection of all certificates. In this paper, we show that many network predicates have distributed proofs offering a high level of redundancy, explicitly or implicitly. We use this remarkable property of distributed proofs for establishing perfect tradeoffs between the size of the certificate stored at every node, and the number of rounds of the verification protocol. If we allow every node to communicate to distance at most t, one might expect that the certificate sizes can be reduced by a multiplicative factor of at least t. In trees, cycles and grids, we show that such tradeoffs can be established for all network predicates, i.e., it is always possible to linearly decrease the certificate size. In arbitrary graphs, we show that any part of the certificates common to all nodes can be evenly redistributed among these nodes, achieving even a better tradeoff: this common part of the certificate can be reduced by the size of a smallest ball of radius t in the network. In addition to these general results, we establish several upper and lower bounds on the certificate sizes used for distributed proofs for spanning trees, minimum-weight spanning trees, diameter, additive and multiplicative spanners, and more, improving and generalizing previous results from the literature. ∗Research supported by the French-Israeli Laboratory on Foundations of Computer Science (FILOFOCS). †The first four authors receive additional support from ANR project DESCARTES. The first two authors receive additional support from INRIA project GANG. ‡Supported by Ulla Tuominen Foundation §Supported by the Fondation Sciences Mathématiques de Paris (FSMP). ar X iv :1 80 3. 03 03 1v 1 [ cs .D C ] 8 M ar 2 01 8
منابع مشابه
A New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملCold standby redundancy optimization for nonrepairable series-parallel systems: Erlang time to failure distribution
In modeling a cold standby redundancy allocation problem (RAP) with imperfect switching mechanism, deriving a closed form version of a system reliability is too difficult. A convenient lower bound on system reliability is proposed and this approximation is widely used as a part of objective function for a system reliability maximization problem in the literature. Considering this lower bound do...
متن کاملShort Proofs Without New Variables
Adding and removing redundant clauses is at the core of state-of-the-art SAT solving. Crucial is the ability to add short clauses whose redundancy can be determined in polynomial time. We present a characterization of the strongest notion of clause redundancy (i.e., addition of the clause preserves satisfiability) in terms of an implication relationship. By using a polynomial-time decidable imp...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018